Abstract Interpolation in Vector-Valued de Branges–Rovnyak Spaces
نویسندگان
چکیده
منابع مشابه
Tangential interpolation in weighted vector-valued H spaces, with applications
In this paper, norm estimates are obtained for the problem of minimal-norm tangential interpolation by vector-valued analytic functions in weighted H spaces, expressed in terms of the Carleson constants of related scalar measures. Applications are given to the notion of p-controllability properties of linear semigroup systems and controllability by functions in certain Sobolev spaces.
متن کاملOperator Valued Series and Vector Valued Multiplier Spaces
Let $X,Y$ be normed spaces with $L(X,Y)$ the space of continuous linear operators from $X$ into $Y$. If ${T_{j}}$ is a sequence in $L(X,Y)$, the (bounded) multiplier space for the series $sum T_{j}$ is defined to be [ M^{infty}(sum T_{j})={{x_{j}}in l^{infty}(X):sum_{j=1}^{infty}% T_{j}x_{j}text{ }converges} ] and the summing operator $S:M^{infty}(sum T_{j})rightarrow Y$ associat...
متن کاملBivariate composite vector valued rational interpolation
In this paper we point out that bivariate vector valued rational interpolants (BVRI) have much to do with the vector-grid to be interpolated. When a vector-grid is well-defined, one can directly design an algorithm to compute the BVRI. However, the algorithm no longer works if a vector-grid is ill-defined. Taking the policy of “divide and conquer”, we define a kind of bivariate composite vector...
متن کاملoperator valued series and vector valued multiplier spaces
let $x,y$ be normed spaces with $l(x,y)$ the space of continuous linear operators from $x$ into $y$. if ${t_{j}}$ is a sequence in $l(x,y)$, the (bounded) multiplier space for the series $sum t_{j}$ is defined to be [ m^{infty}(sum t_{j})={{x_{j}}in l^{infty}(x):sum_{j=1}^{infty}% t_{j}x_{j}text{ }converges} ] and the summing operator $s:m^{infty}(sum t_{j})rightarrow y$ associat...
متن کاملCompactness in Vector-valued Banach Function Spaces
We give a new proof of a recent characterization by Diaz and Mayoral of compactness in the Lebesgue-Bochner spaces L X , where X is a Banach space and 1 ≤ p < ∞, and extend the result to vector-valued Banach function spaces EX , where E is a Banach function space with order continuous norm. Let X be a Banach space. The problem of describing the compact sets in the Lebesgue-Bochner spaces LpX , ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Integral Equations and Operator Theory
سال: 2010
ISSN: 0378-620X,1420-8989
DOI: 10.1007/s00020-010-1844-1